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Abstract—In this paper, an efficient method based on orthonormal 
Bernoulli’s polynomials expansion, together with operational 
matrices of Caputo fractional derivative is proposed in order to solve 
the fractional Lane-Emden type differential equation. The 
orthonormal Bernoulli’s polynomials method are generated here by 
dilation and translation of the classical orthonormal Bernoulli’s 
polynomials. These functions and their associated properties are then 
applied to derive operational matrices of fractional derivative and 
integer order derivative. The operational matrices of fractional 
integrals are utilized to reduce the fractional Lane-Emden 
differential equation to a set of algebraic equations with unknown 
coefficients. Several examples are illuminated to reveal the validity 
and applicability of the proposed method. 
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1. NTRODUCTION 

Fractional calculus is the outcome of multi-disciplinary 
endeavour that brought together mathematicians, physicists 
and engineers. This relationship created a flow of ideas that 
goes well beyond the construction of new transforms. The 
origin of fractional calculus can be traced back to the end of 
17௧௛ century, shortly after the development of classical 
calculus. The earliest systematic studies were attributed to 
Leibniz, Caputo, Hadamard, Fourier, Lioville and Riemann. 
Although fractional calculus is a natural generalization of 
calculus but it has, until recently, played a negligible role in 
physics. One possible explanation of such unpopularity could 
be that there are multiple non-equivalent definitions of 
fractional derivatives. Another difficulty is that fractional 
derivatives have no evident geometrical interpretation because 
of their non-local character (See L. Debnath [5]). However, 

during the past several decades fractional calculus has 
blossomed and grown in pure mathematics as well as in 
scientific applications because of the fact that, a realistic 
modelling of a physical phenomenon having dependence not 
only at the time instant but also the previous time history. In 
fact, recent advances of fractional calculus are dominated by 
modern examples of applications in differential and integral 
equations, plasma physics, image and signal processing, fluid 
mechanics, viscoelasticity, mathematical biology, 
electrochemistry and even finance and social sciences. 

Fractional calculus has been used to model physical and 
engineering processes that are found to be best described by 
fractional differential equations because fractional order 
models are more accurate than integer order models. However, 
in general, it is not easy to derive the analytical or exact 
solutions to most of the fractional differential equations. 
Therefore, it is vital to develop some reliable and efficient 
techniques to solve fractional differential equations. In recent 
decades, several methods have been used to solve fractional 
differential equations, fractional integro-differential equations 
and dynamic systems containing fractional derivatives, such as 
Adomian decomposition method [10], homotopy perturbation 
method [11], homotopy analysis method [24], variational 
iteration method [14], differential transform method [3], finite 
difference method [23], operational matrix method [8, 21] 
Haar wavelet method [19, 20], spectral methods [16], ܤ-spline 
collocation method [12] and many other methods. 

In this paper, we start by considering the renowned Lane-
Emden Fractional Differential Equation of the type 

ሻݔሺݕఈܦ ൅
௖

௫ഀషഁ
ሻݔሺݕఉܦ ൅ ݂ሺݔ, ሻݕ ൌ ݄ሺݔሻ,1 ൏ ߙ ൑

2,0 ൏ ߚ ൑ 1 (1.1) 

together with the initial conditions: ݕሺ0ሻ ൌ ܿଵ&ݕᇱሺ0ሻ ൌ ܿଶ 
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where ݔ ∈ ሾ0,1ሿ, ܿ ൒ 0, ܿଵ, ܿଶ are real constants, ݂ሺݔ,  ሻ is aݕ
continuous real valued function and ݄ሺݔሻ ∈  .ሾ0,1ሿሾ10ሿܥ

The above fractional Lane-Emden equation utilized to model 
successfully several real world phenomena in mathematical 
physics and astrophysics. It demonstrates plenty of 
phenomena including aspects of stellar structure, the thermal 
history of a spherical cloud of gas, isothermal gas spheres, and 
thermionic currents. In addition, the ordinary Lane-Emden 
equation does not always give a correct description of the 
dynamics of systems in complex media. Thus, in order to 
bypass this obstacle and to better describe the dynamical 
processes in a fractal medium, numerous generalizations of 
Lane-Emden equation was suggested. Thus, taking into 
account the memory effects are better described within the 
fractional derivatives, the fractional Lane-Emden equations 
are extracting hidden aspects for the complex phenomena they 
described in various fields of the applied mathematics, 
mathematical physics, and astrophysics. 

In last decades, many researchers sought solutions for 
fractional Lane-Emden equation by using various methods 
which includes second kind Chebyshev operational matrix 
algorithm [7], the modified Legendre-Spectral method [1], the 
method of Jacobi–Gauss collocation [4], the method of 
Hermite functions collocation [2], the method of ultraspherical 
wavelets [22], the method of modified differential transform 
[13], the method of Legendre multi-wavelets [17] etc. 
Motivated and inspired by the work of Sahu and Mallick 
[18],we derive orthonormal Bernoulli’s polynomials 
expansion method for different parameters of the same 
equation. 

The remainder of the paper is organized as follows: In Section 
2, we introduce some basic definitions and mathematical 
preliminaries of fractional calculus. Section 3 depicts the 
fundamentals of orthonormal Bernoulli’s polynomial, its 
properties and operational matrix of the derivative as a 
working tool. In Section 4, we derive the function 
approximation based on the proposed orthonormal Bernoulli’s 
polynomial. Method of solution has been presented in section 
5. In section 6 two well known examples of the type fractional 
order Lane-Emden differential equations are given to 
demonstrate the efficiency and accuracy of the proposed 
method. The conclusion is described in the final section. 

2. BASIC DEFINITIONS OF FRACTIONAL 
CALCULUS 

In this section, we give some necessary definitions and 
mathematical preliminaries of the fractional calculus theory 
which are required for establishing our results. 

Definition 2.1. [15]The Riemann-Liouville fractional 
integration operator of order ߙ ൒ 0 of a function ݂ሺݔሻ is 
defined as 

ሻݔఈ݂ሺܬ  ൌ ଵ

୻ሺఈሻ
׬ 	
௫
଴
ሺݔ െ ߬ሻఈିଵ݂ሺ߬ሻ	݀߬, ݐ ൐ 0, (2.1) 

where Γሺ. ሻ is the well-known gamma function, and some 
properties of the operator ܬఈ are given as follows: 

(i) ܬఈܬఉ݂ሺݔሻ ൌ ,ሻݔఈାఉ݂ሺܬ ,ߙ ߚ ൐ 0; 

(ii) ܬఈܬఉ݂ሺݔሻ ൌ ,ሻݔఈ݂ሺܬఉܬ ,ߙ ߚ ൐ 0; 

(iii) ܬఈݔఉ ൌ ୻ሺଵାఉሻ

୻ሺଵାఈାఉሻ
,ఈାఉݔ ߚ ൐ െ1. 

The Riemann-Liouville derivative has certain disadvantages 
when trying to model real world phenomena with fractional 
differential equations. Therefore, we shall introduce a 
modified fractional differential operator ܦఈ proposed by 
Caputo in his work on the theory of visco-elasticity. 

Definition 2.2. The Caputo fractional derivative of ܦఈ of a 
function ݂ሺݔሻ is defined as 

ሻݔఈ݂ሺܦ ൌ
ଵ

୻ሺ௠ିఈሻ
׬ 	
௫
଴

௙೘ሺఛሻ

ሺ௫ିఛሻഀష೘శభ 	݀߬, (2.2) 

where ݉െ 1 ൏ ߙ ൑ ݉,݉ ∈ Գ. Caputo fractional derivative 
first computes an ordinary derivative followed by a fractional 
integral to achieve the desired order of fractional derivative. 

Similar to integer-order differentiation, the Caputo fractional 
derivative operator is a linear operator as 

ሻݔሺ݂ߛఈሺܦ ൅ ሻሻݔሺ݃ߜ ൌ ሻݔఈ݂ሺܦߛ ൅  ,ሻݔఈ݃ሺܦߜ

where ߛ and ߜ are constants. The Caputo fractional derivative 
also satisfies the following basic properties: 

(i) ܦఈݔఉ ൌ ୻ሺଵାఉሻ

୻ሺଵାఉିఈሻ
,ఉିఈݔ 0 ൏ ߙ ൏ ߚ ൅ 1, ߚ ൐ െ1; 

(ii) ܬఈܦఈ݂ሺݔሻ ൌ ݂ሺݔሻ െ ∑ 	௠ିଵ
௞ୀ଴ ݂௞ሺ0ାሻ

௫ೖ

௞!
, ݉ െ 1 ൏ ߙ ൑

݉,݉ ∈ Գ; 

(iii) ܦఈܥ ൌ 0,  .is a constant ܥ

In the present study, the fractional derivatives are considered 
in the Caputo sense because to obtain a unique solution of a 
fractional Lane-Emden differential equation, we need to 
specify additional conditions. For the case of the Caputo 
fractional differential equations, these additional conditions 
are just the traditional conditions, which are alike to those of 
classical differential equations, and are therefore familiar to 
us. 

3. REVIEW OF ORTHONORMAL BERNOULLI’S 
POLYNOMIAL 

In this section, we mention some properties of Bernoulli 
polynomials which will be of fundamental importance in the 
sequel. 

Many researchers have been studied numerical methods based 
on Bernoulli’s polynomials to solve different problems of 
calculus. The main drawbacks of the Bernoulli’s polynomials 
is that they are not orthogonal. To overcome this problem, we 
normalize the Bernoulli’s polynomials by using Gram-
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Schmidt orthonormalization process [9] and got an explicit 
formula of orthonormal Bernoulli’s polynomials. 

3.1 Definition and properties of orthonormal Bernoulli’s 
polynomials 

The Bernoulli’s basis polynomials of degree ݊ is denoted by 
ࣜ௡ሺݔሻ on ሾ0,1ሿ and are constructed from the following 
relation 

∑ 	௡
௞ୀ଴ ቀ

݊ ൅ 1
݇

ቁࣜ௞ሺݔሻ ൌ ሺ݊ ൅ 1ሻݔ௡, ݊ ൌ 0,1,2,… (3.1) 

In addition, we can express Bernoulli’s polynomial in terms of 
Bernoulli’s numbers as 

ࣜ௡ሺݔሻ ൌ ∑ 	௡
௞ୀ଴ ቀ

݊
݇ቁ ܾ௡ି௞ݔ

௡, (3.2) 

where ܾ௞, ݇ ൌ 0,1,2, … , ݊ are Bernoulli’s numbers that come 
from the formula 

ݔ
݁௫ െ 1

ൌ෍	

ஶ

௜ୀ଴

௜ߙ
௜ݔ

݅!
, ݅ ൌ 0,1,2,… . ሺ2.4ሻ. 

The first few Bernoulli polynomials are 

ࣜ଴ሺݔሻ ൌ 1, ࣜଵሺݔሻ ൌ ݔ െ
1
2
, ࣜଶሺݔሻ ൌ ଶݔ െ ݔ ൅

1
6
, ࣜଷሺݔሻ

ൌ ଷݔ െ
3
2
ଶݔ ൅

1
2
ሻݔସሺࣜ,ݔ

ൌ ସݔ െ ଷݔ2 ൅ ଶݔ െ
1
30

ሺ2.5ሻ 

Moreover, Bernoulli’s polynomials and Bernoulli’s numbers 
satisfy the well-known relations 

1. ࣜ௡ሺݔ ൅ 1ሻ െ ࣜ௡ሺݔሻ ൌൌ ,௡ିଵݔ݊ ݊ ൒ 1. 

2. ࣜ௡ሺ1 െ ሻݔ ൌ ሺെ1ሻ௡ࣜ௡ሺݔሻ, ݊ ൒ 1. 

3. ࣜ௡ᇱ ሺݔሻ ൌ ݊ࣜ௡ିଵሺݔሻ, ݊ ൒ 1. 

׬ .4 	
ଵ
଴ ࣜ௡ሺݔሻ݀ݔ ൌ 0, ݊ ൒ 1. 

׬ .5 	
ଵ
଴
ࣜ௡ሺݔሻࣜ௣ሺݔሻ݀ݔ ൌ ሺെ1ሻ௡ିଵ ௡!௣!

ሺ௡ା௣ሻ!
ܾ௡ା௣, ݊,݉ ൒ 1. 

6. ܾ௡ ൌ െ ଵ

௡ାଵ
∑ 	௡ିଵ
௞ୀ଴ ቀ

݊ ൅ 1
݇

ቁ ܾ௞. 

7. ܾଶ௡ାଵ ൌ 0, ܾଶ௡ ൌ ࣜଶ௡ሺ1ሻ. 

Next, by employing the Gram-Schmidt orthonormalization 
process on the set of Bernoulli’s polynomials, we can 
construct the orthonormal Bernoulli’s polynomials, ߰௡ሺݔሻ 
which can be expressed explicitly as 

߰௡ሺݔሻ ൌ √2݊ ൅ 1∑ 	௡
௞ୀ଴ ሺെ1ሻ

௞ ቀ
݊
݇ቁ ቀ

2݊ െ ݇
݊ െ ݇

ቁ ,௡ି௞ݔ ݊ ൌ

0,1,2,… (3.3) 

where the function ߰௡ሺݔሻ form a basis for ܮଶሾ0,1ሿ. The 
orthogonality property satisfies for these polynomials as 
follows 

׬ 	
ଵ
଴ ߰௡ሺݔሻ߰௣ሺݔሻ݀ݔ ൌ ,௡,௣ߜ ݊, ݌ ൌ 0,1,2, … (3.4) 

where ߜ௡,௣ is the well- known Kronecker delta function. 

4. FUNCTION APPROXIMATION 

A function ݂ሺݔሻ ∈  ଶሾ0,1ሿ can be expressed by theܮ
orthonormal Bernoulli’s polynomials as, 

݂ሺݔሻ ൌ ∑ 	ஶ
௡ୀ଴ ܽ௡߰௡ሺݔሻ, (4.1) 

where ܽ௡ ൌ 〈݂ሺݔሻ, ߰௡ሺݔሻ〉 ൌ ׬ 	
ଵ
଴ ݂ሺݔሻ߰௡ሺݔሻ݀ݔ. If the series in 

the above equation (3.6)is truncated, we then obtain 

݂ሺݔሻ ≊ ∑ 	ே
௡ୀ଴ ܽ௡߰௡ሺݔሻ ൌ  ሻ, (4.2)ݔΨሺ்ܣ

where ܣ and Ψሺݔሻ are ܰ ൅ 1 matrices given by ܣ ൌ
ሾܽ଴, ܽଵ,… , ܽேሿ், 

Ψሺݔሻ ൌ ሾ߰଴ሺݔሻ, ߰ଵሺݔሻ, … , ߰ெሺݔሻሿ். 

The suitable collocation points depends on resolution is as 
follow: 

௜ݔ ൌ
ଶ௜ିଵ

ଶே
, ݅ ൌ 1,2, … ,ܰ. (4.3) 

Theorem 3.1 If ݂ሺݔሻ ∈  ଶሺԹሻ be a continuous functionܮ
defined on ሾ0,1ሿ and ∥ ݂ሺݔሻ ∥൑ ௙ࣨ, then the orthonormal 
Bernomial’s polynomials expansion of ݂ሺݐሻ defined in (3.6) 
converges uniformly and also 

∥ ܽ௠ ∥൑ √2݊ ൅ 1෍ 	

௡

௞ୀ଴

ሺെ1ሻ௞ ቀ
݊
݇ቁ ቀ

2݊ െ ݇
݊ െ ݇

ቁ ௙ࣨ. 

Proof. The proof is straightforward. 

5. METHOD OF SOLUTION 

We now ready to construct the solution method of 
corresponding equation (1.1), as 

 

ሻݔሺݕఈܦ ൅ ௖

௫ഀషഁ
ሻݔሺݕఉܦ ൅ ݂ሺݔ, ሻݕ ൌ ݄ሺݔሻ,1 ൏ ߙ ൑ 2,0 ൏

ߚ ൑ 1 (5.1) 

For this purpose, we first approximate the unknown function 
 ሻ, using (4.2) asݔሺݕ

ሻݔሺݕ ൌ ்ܥ ⋅ Ψሺݔሻ 

ൌ ்ܥ ⋅ ܣ ⋅ ேܶሺݔሻ, (5.2) 

where 

ሻݔேሺܨ ൌ ሾ1, ,ݔ ,ଶݔ … , ,ேሿ்ݔ ܣ ൌ ܲିଵ, ܽ݊݀	ܲ ൌ ሾ݌௜,௝ሿ, (5.3) 

where 

௜,௝݌ ൌ ඥ2݆ ൅ 1∑ 	௝
௞ୀ଴ ሺെ1ሻ

௞ ቀ݆
݇
ቁ ൬
2݆ െ ݇
݆ െ ݇ ൰

ଵ

௜ା௝ି௞ାଵ
. (5.4) 

Next,in case of nonlinear term, we assume term 
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݂ሺݔ, ሻሻݔሺݕ ൌ  ሻ (5.5)ݔሺݍ

and approximate ݍሺݔሻ using (3.2), as 

ሻݔሺݍ ൌ ்ܳ ⋅ Ψሺݔሻ ൌ ்ܳ ⋅ ܣ ⋅  ሻ. (5.6)ݔேሺܨ

Again we expand Caputo-derivative as 

ሻݔሺݕఈܦ ൌ ்ܥఈሺܦ ⋅ Ψሺݔሻሻ ൌ ்ܥఈሺܦ ⋅ .ܣ  ሻሻݔேሺܨ

ൌ ்ܥ ⋅ ܣ ⋅ ሻሻݔேሺܨఈሺܦ ൌ ்ܥ ⋅ ܣ ⋅ ఈܰ ⋅  ሻ (5.7)ݔேሺܨఈିݔ

where 

ఈܰ ൌ

ۉ

ۈ
ۈ
ۈ
ۈ
ۇ

0 0 0 … 0
0 0 0 … 0
0 0

୻ሺଷሻ

୻ሺଷିఈሻ
… 0

⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ 	⋅ ⋅
⋅ ⋅ ⋅ 		⋅ ⋅
0 0 0 …

୻ሺேሻ

୻ሺேିఈሻی

ۋ
ۋ
ۋ
ۋ
ۊ

. (5.8) 

In the same way, 

ሻݔሺݕఉܦ ൌ ்ܥ ⋅ ܣ ⋅ ఉܰ ⋅  ሻ, (5.9)ݔேሺܨఉିݔ

where 

ఉܰ ൌ

ۉ

ۈ
ۈ
ۈ
ۈ
ۈ
ۇ

0 0 0 … 0
0

୻ሺଶሻ

୻ሺଶିఉሻ
0 … 0

0 0 ୻ሺଷሻ

୻ሺଷିఉሻ
… 0

⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ 	⋅ ⋅
⋅ ⋅ ⋅ 		⋅ ⋅
0 0 0 … ୻ሺேሻ

୻ሺேିఉሻی

ۋ
ۋ
ۋ
ۋ
ۋ
ۊ

. (5.10) 

Substituting the matrix relations (5.3),(3.2),(5.7) & (5.9) in 
(5.1) and simplifying, we obtain the fundamental matrix 
equation as 

்ܥ ⋅ ܣ ⋅ ሺ ఈܰ ൅ ܿ ఉܰሻ ⋅ ሻݔேሺܨ ൅ ்ܳ ⋅ ܣ ⋅ ሻݔேሺܨఈିݔ ൌ
 ሻ.(5.11)ݔఈ݄ሺିݔ

After applying the collocation points (4.3) in (5.5) & (5.11), 
we obtain 

்ܥ ⋅ ܣ ⋅ ሺ ఈܰ ൅ ܿ ఉܰሻ ⋅ ௜ሻݔேሺܨ ൅ ்ܳ ⋅ ܣ ⋅ ௜ݔ
ିఈܨேሺݔ௜ሻ ൌ

 ௜ሻ, (5.12)ݔఈ݄ሺିݔ

and 

݂ሺݔ௜, ்ܥ ⋅ ܣ ⋅ ௜ሻሻݔேሺܨ ൌ ்ܳ ⋅ ܣ ⋅  ௜ሻ. (5.13)ݔேሺܨ

with initial conditions 

்ܥ ⋅ ܣ ⋅ ேሺ0ሻܨ ൌ ܿଵ, ்ܥ ⋅ ܣ ⋅ ேᇱܨ ሺ0ሻ ൌ ܿଶ. (5.14) 

Now, using the equations (5.12),(5.13), & (5.14), we get the 
system of algebraic equations with 2ܰ unknowns 
ܽ଴, ܽଵ, … , ܽ௡, ,଴ݍ ,ଵݍ … ,  ே. Solving this system of equationݍ
numerically to get the value of the matrices ்ܥ&்ܳ. By doing 
all this, we get the approximate solution ݕሺݔሻ. 

6. APPLICATIONS 

In this section, some numerical problems are given to illustrate 
the applicability and accuracy of the proposed method. All the 
numerical computations are carried out using MATLAB. 

Example 5.1 Consider the following fractional Lane-Emden 
Equation: 

ሻݔሺݕఈܦ ൅
ଵ

௫ഀషഁ
ሻݔሺݕఉܦ ൅

ଵ

௫ഀషమ
ሻݔሺݕ ൌ ݄ሺݔሻ, ݔ ∈ ሺ0,1ሻ

 (6.1) 

where ݄ሺݔሻ ൌ ଶିఈݔ ቂെ6ݔ ቀ୻ሺସିఉሻା୻ሺସିఈሻ
୻ሺସିఈሻ୻ሺସିఉሻ

൅ ௫మ

଺
ቁ ൅

2 ቀ
୻ሺଷିఉሻା୻ሺଷିఈሻ

୻ሺଷିఈሻ୻ሺଷିఉሻ
൅

௫మ

ଶ
ቁቃ for ߙ ൌ 3/2 and ߚ ൌ 1, with subject 

to initial conditions ݕሺ0ሻ ൌ 1, ᇱሺ0ሻݕ ൌ 0. 

The exact solution of this problem is ݕሺݔሻ ൌ ଷݔ െ  ଶ. Theݔ
approximate solution by the proposed method for this problem 
is presented tabularly in Table 5.1. It is clear from the table 
that the proposed method gives us the accurate values 
compared with the exact solution. 

Table 5.1: Numerical solution of Example 5.1 for ࡺ ൌ ૟ with 
exact solution.  

 ݎ݋ݎݎܧ .ݔ݋ݎ݌݌ܣ ݐܿܽݔܧ ݔ
0.1 െ0.0091 െ0.0091 4.80327 ൈ 10ି12

0.2 െ0.0322 െ0.0322 4.76248 ൈ 10ି12

0.3 െ0.0634 െ0.0634 4.87696 ൈ 10ି12

0.4 െ0.0967 െ0.0967 4.98397 ൈ 10ି12

0.5 െ0.1258 െ0.1258 4.23442 ൈ 10ି12

0.6 െ0.1449 െ0.1449 4.43918 ൈ 10ି12

0.7 െ0.1474 െ0.1474 4.75914 ൈ 10ି12

0.8 െ0.1283 െ0.1283 4.34519 ൈ 10ି12

0.9 െ0.0813 െ0.0813 4.76821 ൈ 10ି12

 
Example 5.2 Consider the following Lane-Emden fractional 
differential Equation: 

ሻݔሺݕఈܦ ൅ ଵ

௫ഀషഁ
ሻݔሺݕఉܦ ൅ ଵ

ଵି௫
ሻݔሺݕ ൌ ݄ሺݔሻ, ݔ ∈ ሺ0,1ሻ

 (6.2) 

where ݄ሺݔሻ ൌ ௫య

ଵି௫
cosሺݔሻ െ ߙ ሻ forݔሻ4cosሺݔsinሺݔ5 ൌ 1.9 and 

ߚ ൌ 0.9, with subject to  

initial conditions ݕሺ0ሻ ൌ 0, ᇱሺ0ሻݕ ൌ 0. 

The exact solution of this problem is ݕሺݔሻ ൌ  ሻ. Theݔଶcosሺݔ
approximate solution by the proposed method for this problem 
is presented tabularly in Table 5.2. It is clear from the table 
that the proposed method gives us the accurate values 
compared with the exact solution. 

Table 5.2: Numerical solution of Example 5.2 for ࡺ ൌ ૟with exact 
solution.  

 ݎ݋ݎݎܧ .ݔ݋ݎ݌݌ܣ ݐܿܽݔܧ ݔ
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0.1 0.0099 0.0099 4.84324 ൈ 10ି14

0.2 0.3999 0.3999 4.8624 ൈ 10ି14

0.3 0.0899 0.0899 4.8769 ൈ 10ି13

0.4 0.1599 0.1599 4.1239 ൈ 10ି14

0.5 0.2499 0.2499 4.6744 ൈ 10ି14

0.6 0.3599 0.3599 4.9891 ൈ 10ି14

0.7 0.4898 0.4898 4.9891 ൈ 10ି12

0.8 0.6399 0.6399 4.0050 ൈ 10ି13

0.9 0.8099 0.8099 4.8082 ൈ 10ି14

7. CONCLUSION 

We construct a Bernoulli’s polynomial expansion for solving 
fractional order Lane-Emden differential equations. Also, we 
have given a general procedure of forming the operational 
matrix ఈܰ and ఉܰ which plays an important role in this 
technique. The main advantage of the present techniques is 
that it transforms the problem into algebraic system of 
equation so that the computation is quite easy and simple. Two 
well known examples have been considered to check the 
reliability and effectiveness of the proposed method. 
Moreover, we compared the approximate result with the exact 
solution reported recently in the literature. 
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